看得见的“学习”成果
- 来源:IT经理世界 smarty:if $article.tag?>
- 关键字:人工智能,日常,谷歌,亚马逊 smarty:/if?>
- 发布时间:2017-05-18 13:54
虽然人工智能常常被认为是超未来的技术,但它已经渗透到了日常生活中,甚至已司空见惯。
当你用谷歌搜索东西、使用地图软件、在亚马逊上购物,或者对智能手机中的语音识别软件说话,其实都在使用人工智能。当你登录到Facebook,欣赏那些可爱的婴儿照片,人工智能都在塑造你的体验。
所有这些应用的背后都使用了算法,算法本质上是形成分析过程的一组规则,能够对变量输入做出响应。如今的算法,尤其是来自亚马逊和Facebook等巨头的算法,响应速度快,还不断学习。它们事先经过编程,可采集来自用户的更准确的响应;也就是说,结果是为控制算法的那些厂商服务的。
了解和响应
当你在亚马逊上购物时,算法在后台基于一个包含众多购买模式的庞大数据库,执行异常高级的运算,之后决定将什么产品展示在你面前。它实时响应你的点击轨迹。
你可能觉得,有一个活生生的私人购物助手是最好不过的选择;她了解潮流,对你本人很了解。可是人工智能技术厂商Ayasdi的首席营销官丹尼尔·德鲁克(Daniel Druker)表示,这样的私人购物助手与亚马逊没法比。亚马逊“利用人工智能,结合你之前的购买活动,从100万件商品中推测眼下哪些商品最能吸引你的眼球。没有哪个人能做到这一点。”
在Facebook上,出现在你个人动态(feed)中的朋友不多,那是因为Facebook的人工智能算法知道:你受不了个人动态内容太多的情况。于是,Facebook使用人工智能,对你关于私人关系圈的讯号做出敏感的反应,打造你的个人动态,建立起一种更有效的情感联系。要是你以为人工智能冷若冰霜、缺乏人情味,Facebook用它来窥视你的内心(以及Facebook另外12.3亿日常用户的内心)。它威力强大,说Facebook人工智能影响了美国总统大选毫不为过。
尽管人工智能目前具有巨大的影响力,但它仍被看作是太过遥远的一项神奇技术。人工智能技术厂商Sentient Technologies的创始人兼首席科学家巴巴克·霍加特 (Babak Hodjat)说:“算法或应用有多诱人、多新潮、多强大,并不重要。我常常出去介绍这些系统时,人们总是会说‘是的,那很智能、那很酷,但这不是人工智能。’”
人们之所以会有这种怀疑,是因为“普通公众而非从业人士常常误以为人工智能是包含情感智能、创造力、自主性等一系列能力的人类级一般智能。”霍加特说,因而,人工智能“总是被认为是我们会发明的下一大技术。我认为,今后10年至15年还会是这种情况。”
他表示,在许多当前的应用中,人工智能比人类更强大。“你只要说一个方面,我可以告诉你这个方面是如何实施的、如何比人类更强大。起码,人工智能运行起来更快,所以当下人工智能的决策和行动周期要比人类响应世界的速度快得多。”
人工智能在过去几年得到了突飞猛进的发展。百度硅谷人工智能实验室主任亚当·科茨(Adam Coates)说:“这在10年前是很难实现的。当然,未来几年,我们认为在人类非常擅长处理、但计算机向来不擅长的许多问题上,人工智能会取得巨大进展。比如说,识别图像中的实体,或者理解语音、对口语做出响应,那些是深度学习和人工智能技术在未来几年会持续改进的问题。”
推动与向前
什么功能在推动这些进展?人工智能必须获得什么样的功能才能向前发展?
皮特·阿贝尔(Pieter Abbeel)是加州大学伯克利分校的计算机科学系教授,也是人工智能教育初创公司Gradescope的联合创始人。他表示,首先,人工智能系统需要能够在没有人类干预的情况下自主学习。此外,它还在被告知诸如“你从这个角度堆方块,也许效果会更好”之类的信息时,应该有沟通和理解能力。“要是它无法领会这样的信息,我们不会认为它具有真正的智能。”
人类(至少理论上)能够利用过去的经验来推断和处理新环境,在这方面机器人则差的很远。为机器人编程、以便它在有限的环境下提供辅助要容易得多。人工智能科学家们想为机器人编程,以便处理相关的变化。
阿贝尔说:“它们需要运用过去获得的经验,推广到不一样但相类似的新场景,了解这种关联性。我对于机器人如何能真正从头开始学会做事很感兴趣。”从头开始学起是人类特有的能力;如果机器人能够真正做到填补其空白,它有望成为独立的个体。
但人工智能机器人的“学习能力”可能有许多不同的方式来定义,一些是很普通的“尝试和奖励”方式,类似于教狗学新花招。比如说,人工智能强化学习可编写机器人的软件,从试错过程中学习。加州大学伯克利分校的BRETT机器人基于行动后奖励的多少来使用强化学习技术。阿贝尔说:“奖励的变化让该机器人得以分辨什么是好的,什么是不好的,进而重点采用获得奖励多的策略。”
与之相仿,人工智能科学家使用监督式学习,为计算机馈送标记输入(这些是猫,这些是狗)的许多实例,并给出明确的目标输出(这是猫还是狗?)。非监督式学习给计算机馈送非标记数据(比如说许多动物的照片),计算机进行分类,或者以其他方式为该数据定义结构模型(这些动物身上的毛比其他这些动物多得多)。科茨表示,非监督式学习是“非常重要的研究热点,因为我们知道人类所做的在很大程度上是非监督式学习。”
人工智能“学习”的核心是神经网络,它类似人类大脑。跟大脑一样,面对更多的输入,神经网络会自我调整。阿贝尔说:“你展示足够多的那些实例,神经网络就会自我调整,说‘针对那个输入,我需要那个输出’;所以,要做到这一点,唯一的途径是,我需要调整联系的部分强度,那样我才能搞好那种对应。所以,在某种意义上,你在训练神经网络时,是让计算机学习它的计算机程序,而不是将计算程序编入到里面。”
科茨解释,不过打造神经网络并非易事。“一大挑战在于,我们不是非常清楚如何仅凭一些非标记、非结构化的数据来训练神经网络。我们不知道如何量化神经网络在处理这些种类的任务中的好坏。等到我们在这方面有了发现,那将是一大进步。但我们还没有到那一步。所以,这离人类智能相差甚远。”
虽然人工智能还不是人类智能,但像谷歌的DeepMind这些人工智能领导者表明了,人工智能学习的响应速度有多快。比如说,一台计算机想玩好井字棋游戏,不需要什么特殊的智能;这个游戏很简单,计算机凭蛮力(计算能力)即可取胜。阿贝尔说,相比之下,DeepMind玩经典的雅达利游戏《打砖块》时,它“实际上得学习概念”。DeepMind在学会玩的过程中,“知道要学习视觉系统,要学习基于操纵杆动作的运动控制。其神经网络实时响应多个变量的能力不亚于人类。
随着神经网络技术不断改进,人工智能学习变得更像人类。不过作为一名人工智能未来学家,阿贝尔设想有朝一日,可以把教人类学生的人类专家拥有的所有微妙特征和个人洞察力统统教给机器人。比如说,就像职业篮球员教初学者:“投篮的时候双眼盯着篮筐……利用篮板有好处。”也就是说,像人类那样有无数种响应方式。“现阶段远未能做到这点,但那是你希望未来会出现的一幕。” 阿贝尔说。
文/詹姆斯·马圭尔 编译/沈建苗